2008 DOE HYDROGEN PROGRAM MERIT REVIEW AND PEER EVALUATION MEETING BLOCK SCHEDULE | | | | | | | | | | | | | | | Schedul | e as of: | 13-M | ay-08 | |--------------|-------------------------------------|-------------|--|----------|----------|-------|--------|-----------|------|--------|----------|-----------|----------|----------------|-----------|------------|--------| | | Monday June 9 | | Tuesday | June 10 |) | W | ednesd | ay June | 11 | 1 | Thursday | y June 1 | 2 | Friday June 13 | | | | | Session | | Α | В | С | D | Α | В | С | D | Α | В | С | D | Α | В | С | D | | Salon | | V&VI | IV | III | 1&11 | V&VI | IV | Ш | 1811 | V&VI | IV | Ш | 1811 | V&VI | IV | Ш | 1&11 | | 8:15 | | | | | | | | | | Review | ver Orie | ntation N | /leeting | | | | | | 8:30
8:45 | | PD | ST | FC | AN | | | | | | | | ED | | | | | | 9:00 | | PD | ST | FC | AN | AN | ST | FC | BES | PD | AN | FC | ED | PD | ST | FC | AN | | 9:30 | | PD | ST | FC | AN | AN | ST | FC | BES | PD | AN | FC | ED | PD | ST | FC | AN | | 10:00 | | PD | ST | FC | AN | AN | ST | FC | BES | PD | AN | FC | ED | PD | ST | FC | AN | | 10:30 | | | Break | | | Br | eak | - | | Bro | eak | | | Break | ı | AN | | | 11:00 | | PD | ST | FC | TV* | PD* | ST | FC | BES | PD | ST | FC | ED | PD | | FC | AN | | 11:30 | | PD | ST | FC | TV | PD | ST | FC | BES | PD | ST | FC | ED | PD | | FC | MF* | | 12:00 | | PD | ST | FC | TV | PD | ST | FC | BES | PD | ST | FC | ED | | | FC | MF | | 12:30 | | | | | | | | | | • | | | • | | | FC | | | | | | Lui | nch | | | Lu | nch | | | Lu | nch | | | | | MF | | 1:30 | | | | | | | | | | | | | | | | | | | 1:45 | Plenary | PD | ST | FC | TV | PD | ST | FC | BES | PD | ST | FC | ED | | | | MF | | 2:15 | i ionary | PD | ST | FC | TV | PD | ST | FC | BES | PD | ST | FC | SCS* | | | | | | 2:45 | B | PD | ST | FC | TV | PD | ST | FC | BES | PD | ST | FC | SCS | | | | | | 3:15 | Break | PD | ST | FC | | PD | ST | FC | BES | PD | ST | FC | SCS | | | | | | 3:45 | | | | eak | T) (| Break | | | | Break | | | | | | | | | 4:15 | Plenary | PD | ST | FC | TV | PD | ST | FC | BES | PD | ST | FC | SCS | | | | | | 4:45 | , | PD | ST | FC | TV | PD | ST | FC | BES | PD | ST | FC | SCS | | | | | | 5:15 | B : 0: 10 M 0 | PD | ST | FC | TV | PD | ST | FC | BES | PD | ST | FC | SCS | | | | | | 5:45 | Reviewer Orientation Meeting | PD | ST | FC | TV | PD | ST | FC | BES | PD | ST | FC | SCS | | | | | | | | | | | | | | | | Revie | wer Fee | dback M | leeting | | | | | | 6:30 | | | el Cell Co | | • | | | | | | | | | FC: Fuel | | | | | 7:00 | POSTER SESSION I: Storage, | Room G | 3-50 Dirks | en Senat | e Office | | | SIONII | | | | | | TV: Tech | | Validation | on | | 7:30 | Analysis, SC&S, Manufacturing, | Building | Building, 6:30 – 8:30 PM (see map
on H2 AMR Web site) | | | | | tion & De | | | Free | Night | | ST: Stora | | | | | 8:00 | Market Transformation, | 0 | | | | (inc | - | asic Ene | ergy | | | | | PD: Prod | | and Deli | very | | 8:30 | Technology Validation | Ů. | | | | | Scie | ence) | | | | | | AN: Analysis | | | | | 9:00 | | | | | | | | | | | | | | BES: Ba | | rgy Scie | nces | | | | | | | | | | | | | | | | ED: Edu | | | | | | *: 15 minute talk, starts 15 minute | s after lis | ted time. | | | | | | | | | | | SCS: Sa | | | ndards | | | | | | | | | | | | | | | | MF: Mar | nufacturi | ing | | | | | | | | | <u> </u> | | o io - Otal i iesci | | | | | | | | 13-Way-06 | |----------|----------------|-----------|---|--|--------------|-----------|-------------------------------|--|-----------------|---------------|-------------------|---|--------------|-----------|--------------------------------|--| | | <u>L.</u> | | | ssion A | <u> </u> | | | Session B | <u> </u> | | | ession C | <u> </u> | | | ssion D | | | | _ast | Org | Title | - | Last | Org | Title | | ast | Org | Title | - | Last | Org | Title | | 8:45 AM | P F
D
0 | Farmer | DOE | Hydrogen Production and Delivery
Program Element | S
T
0 | Satyapal | DOE | Hydrogen Storage - Session Review | F G
C
0 | arland | DOE | Fuel Cells | A
N
O | Joseck | DOE | Systems Analysis Session
Introduction | | 9:00 AM | P I
D | Lomax | H2Gen Inno.
Inc. | Low-Cost Hydrogen Distributed
Production System Development | S
T
1 | Lasher | TIAX | Analyses of Hydrogen Storage
Materials and On-Board Systems | F D
C
1 | ebe | | Advanced Cathode Catalysts and Supports for PEM Fuel Cells | A
N
1 | Greene | ORNL | HyTrans Model: Analyzing the
Transition to Hydrogen-Powered
Transportation | | 9:30 AM | P H
D
2 | King | PNNL | BioBioDerived Liquids Reforming | S
T
2 | Ahluwalia | ANL | System Level Analysis of Hydrogen
Storage Options | F M
C
2 | yers | ANL | Non-Platinum Bimetallic Cathode
Electrocatalysts | A
N
2 | Wang | ANL | Fuel-Cycle Analysis of Hydrogen-
Powered Fuel-Cell Systems with
the GREET Model | | 10:00 AM | P .
D
3 | James | DTI | Distributed BLI Economic Analysis | S
T
3 | Gross | HyEnergy | Best Practices for Characterizing
Hydrogen Storage Properties of
Materials | F Z
C
3 | elenay | LANL | Advanced Cathode Catalysts | A
N
15 | Melaina | NREL | Discrete Choice Analysis of
Consumer Preferences for
Refueling Availability | | 10:30 AM | | | | Break | | | | Break | | | • | Break | | | E | Break | | 11:00 AM | P /
D
4 | Ahmed | ANL | Distributed Ethanol Reformimg | S
T
4 | Ott | LANL | DOE Chemical Hydrogen Storage
Center of Excellence Overview | F V
C a | iswanath
n | | Development of Alternative and
Durable High Performance
Cathode Supports for PEM Fuel | T
V
0 | Garbak | DOE | Technology Validation | | 11:30 AM | P (
D
5 | Ozkan | Ohio State U | Investigation of reaction networks and active sites in bio-ethanol steam reforming over Co-based catalysts | S
T
5 | Aardahl | PNNL | PNNL Progress as Part of the
Chemical Hydrogen Storage Center of
Excellence | F M
C
5 | otupally | UTC Fuel
Cells | Highly Dispersed Alloy Cathode
Catalyst for Durability | T
V
5 | Wipke | NREL | Controlled Hydrogen Fleet & Infrastructure Analysis | | 12:00 PM | P F
D
6 | Rozmiarek | Virent Energy
Sys. | Hydrogen Generation from Biomass-
Derived Carbohydrates via Aqueous-
Phase Reforming Process | | Burrell | LANL | Chemical Hydrogen Storage R&D at
Los Alamos National Laboratory | F A
C
6 | hluwalia | ANL | Fuel Cell Systems Analysis | | | | | | 12:30 PM | | | | Lunch | | | | Lunch | | | | Lunch | | | L | unch | | 1:45 PM | D
7 | | Linde | Integrated Hydrogen Production,
Purification & Compression System | S
T
7 | Sneddon | U of Penn. | Amineborane-Based Chemical
Hydrogen Storage | F Ja
C
7 | ames | | Mass Production Cost Estimation
for Direct H2 PEM Fuel Cell
System for Automotive
Applications | T
V
1 | Grasman | DaimlerChrysler | Hydrogen to the Highways | | 2:15 PM | D
8 | | Arizona State U | Zeolite Membrane Reactor for Water-
Gas-Shift Reaction for Hydrogen
Production | S
T
8 | Linehan | Rohm and
Haas | Chemical Hydrogen CoE - Novel
Approaches to Hydrogen Storage:
Conversion of Borates to Boron
Hydrides | FS
C8 | inha | | Direct Hydrogen PEMFC Manufacturing Cost Estimation for Automotive Applications | T
V
2 | Frenette | Ford | Hydrogen Fuel Cell Vehicle &
Infrastructure Demonstration
Program Review | | 2:45 PM | P I
D
9 | Hopkins | Pall Corp. | High-Performance, Durable, Palladium-Alloy Membrane for Hydrogen Separation & Purification | S
T
9 | Dixon | UA | Main Group Element and Organic
Chemistry for Hydrogen Storage and
Activation | F M
C
9 | ore | ORNL | Microstructural Characterization
Of PEM Fuel Cell MEAs | T
V
3 | Casey | Chevron | Controlled Hydrogen Fleet and
Infrastructure Demonstration and
Validation Project | | 3:15 PM | P I
D
10 | Hamdan | Giner
Electrochemical
Systems LLC | Low Cost High Pressure Hydrogen
Generator | S
T
10 | | U of
Washington | Solutions for Chemical Hydrogen
Storage: Hydrogenation/
Dehydrogenation of B-N Bonds | F Jo
C
10 | ohnston | | Applied Science for Electrode
Cost, Performance, and Durability | T
V
4 | Sell | General Motors | Hydrogen Vehicle and Infrastructure
Demonstration and Validation | | 3:45 PM | | | 1 | Break | | | | Break | | | | Break | | | E | Break | | 4:15 PM | P F
D
11 | Porter | Distributed
Energy
Systems | Hydrogen Generation from
Electrolysis: 100 kg H2/day Trade
Study | S
T
11 | Power | UC Davis | Chemical Hydrogen Storage using
Ultra-High Surface Area Main Group
Materials & The Development of
Efficient Amine-Borane Regeneration
Cycles | F M
C
11 | itlitsky | | Low-cost Co-production of
Hydrogen and Electricity | T
V
6 | Heydorn | Air Products | Validation of an Integrated
Hydrogen Energy Station | | 4:45 PM | P \
D
12 | Woodbury | ASU | Development of Water Splitting
Catalysts Using a Novel Molecular
Evolution Approach | S
T
27 | | UC
Berkeley/LBNL | A Synergistic Approach to the
Development of New Hydrogen
Storage Materials, Part I | F G
C
12 | oldbach | Arkema | Improved, Low-Cost, Durable
Fuel Cell Membranes | T
V
7 | Heydorn | Air Products | California Hydrogen Infrastructure
Project | | 5:15 PM | D
13 | | STCH
Collaboration | Development of Solar Powered
Thermochemical Production of
Hydrogen from Water | T
13 | Fischer | U of
Penn./Drexel
Univ. | Carbide-Derived Carbons with
Tunable Porosity Optimized for
Hydrogen Storage | C
13 | | | Membranes and MEA's for Dry,
Hot Operating Conditions | T
V
8 | Rocheleau | Hawaii Natural
Energy Inst. | Hawaii Hydrogen Center for
Development and Deployment of
Distributed Energy Systems | | 5:45 PM | P
D
14 | T-Raissi | UCF/FSEC | Solar-Driven Photocatalitically-
Assisted Water Splitting | S
T
14 | Shaw | U of
Connecticut | Effects and Mechanisms of
Mechanical Activation on Hydrogen
Sorption/Desorption of Nanoscale
Lithium Nitrides | F K
C
14 | err | | New Polyelectrolyte Materials for
High Temperature Fuel Cells | T
V
9 | Aceves | LLNL | Automotive Cryogenic Capable
Pressure Vessels for Compact,
High Dormancy (L)H2 Storage | **Wednesday June 11 - Oral Presentations** | | | | | | vegnesday June 11 - Oral Presentations 1 | | | | | | | | | | | | |-------|---------------------|---|--|---|--|--|--------------|--------------|-----------|--|-------------|--------------------|--|---|--|--| | | Ti | Session | | ļ , , , , , , , , , , , , , , , , , , , | | ssion B | 1 | I | | ession C | ! | | | ession D | | | | 0.45 | Last | Org | Title | Last | Org | Title | 1 | Last | Org | Title | 1 | Last | Org | Title | | | | 8:45 | | | | | | | | | | | | | | | | | | 9:00 | A Ruth | NREL | Macro-System Model | S Heben
T
15 | NREL | DOE Hydrogen Sorption Center of Excellence (HS-CoE): Overview | F
C
15 | Fenton | Florida | Lead Research and Development
Activity for DOE's High Temperature,
Low Relative Humidity Membrane
Program | B
E
S | Meyer | University of
North Carolina | Metal-to-Ligand Charge Transfer
Excited States on Surfaces and in
Rigid Media.Application to Energy
Conversion | | | | 9:30 | Tolley | RCF, Inc. | Analysis of the Hydrogen
Production and Delivery
Infrastructure as a Complex
Adaptive System | | Miami Univ
Ohio | A Biomimetic Approach to Metal-
Organic Organic Frameworks with
High H2 Uptake | F
C
16 | McGrath | | Advanced Materials for Proton
Exchange Membranes | B
E
S | Prezhdo | University of
Washington | Real-Time Atomistic Simulation of
Light Harvesting and Charge
Transport for Solar Hydrogen
Production | | | | 10:00 | A Steward | NREL | Updates to the H2A Hydrogen
Production Discounted Cash Flow
Model (H2A version 2.0) | S Yang
T
17 | U of Michigan | Hydrogen Storage by Spillover | F
C
17 | Gervasio | | Protic Salt Polymer Membranes: High-
Temperature Water-Free Proton-
Conducting Membranes | B
E
S | Nozik | NREL | Efficient H2 Production via Novel
Molecular Chromophores and
Nanostructures | | | | 10:30 | | Brea | ak | | I | Break | | 1 | | Break | | | | Break | | | | 11:00 | Gardiner | DOE | Hydrogen Delivery Program
Element | S Yakobson
T
18 | Rice U. | Optimization of Nano-Carbon
Materials for Hydrogen Sorption | F
C
18 | Creager | | Fluoroalkyl-phosphonic-acid-based proton conductors | B
E
S | Ghirardi | NREL | Regulation of H2 and CO2
Metabolism: Factors Involved in
Partitioning of Photosynthetic
Reductant in Green Algae | | | | 11:30 | Kelly O | Nexant Inc. | Hydrogen Delivery Infrastructure
Options Analysis | S Dillon
T
19 | NREL | NREL Research as Part of the
Hydrogen Sorption Center of
Excellence | F
C
19 | Litt | Western | Rigid Rod Polyelectrolytes: Effect on
Physical Properties Frozen-in Free
Volume: High Conductivity at low RH | B
E
S | Adams | University of
Georgia | Fundamental Studies of
Recombinant Hydrogenases | | | | 12:00 | Mintz
O | ANL | Hydrogen Delivery Infra. Analysis | S Geohegan
T
20 | ORNL | Single-Walled Carbon Nanohorns
for Hydrogen Storage and
Catalyst Supports | F
C
20 | Pintauro | Case | NanoCapillary Network Proton
Conducting Membranes for High
Temperature Hydrogen/Air Fuel Cells | B
E
S | Feldheim | North Carolina
State
University | Catalyst Discovery Using
Biomolecule Evolution | | | | 12:30 | :30 Lunch | | | | l | unch | | | | Lunch | | , | <u>'</u> | Lunch | | | | 1:45 | Petros
D | U of Illinois | A combined Materials
Science/Mechanics Approach to
the Study of Hydrogen
Embrittlement of Pipeline Steels | S Liu
T
21 | Argonne | Hydrogen Storage through
Nanostructured Polymeric
Materials | F
C
21 | Herring | | Novel Approaches to Immobilized
Heteropoly Acid (HPA) Systems for
High Temperature, Low Relative
Humidity Polymer-Type Membranes | B
E
S | Lewis | California
Institute of
Technology | Sunlight-Driven Hydrogen
Formation by Membrane-Supported
Photoelectrochemical Water
Splitting | | | | 2:15 | Stalheim
0
18 | Secat/ORNL | Materials Solutions for Hydrogen
Delivery in Steel Pipeline | S Cooper
T
22 | Air Products | Enabling Discovery of Materials
With a Practical Heat of H2
Adsorption | F
C
22 | Lvov | | New Proton Conductive Composite
Materials with Co-continuous Phases
Using Functionalized and
Crosslinkable VDF/CTFE
Fluoropolymers | B
E
S | Choi | Purdue
University | Electrochemical Construction of
High Performance, Low Cost
Polycrystalline Photoelectrodes for
Solar Hydrogen Production | | | | 2:45 | Smith | ORNL | Composite Technology for
Hydrogen Pipelines | S Ahn
T 23 | CalTech | Enhanced Hydrogen Dipole
Physisorption: Henry's Law and
isosteric heats in microporous | F
C
23 | Lipp | | High Temperature Membrane with
Humidification-Independent Cluster
Structure | B
E
S | Parkinson | Colorado
State
University | A Combinatorial Approach to
Realization of Efficient Water
Photoelectrolysis | | | | 3:15 | Adams | SRNL | Hydrogen Permeability and
Pipeline Integrity/Fiber Reinforced
Composite Pipeline | S Baumann
T
24 | LLNL | Carbon Aerogels for Hydrogen
Storage | F
C
24 | Mittelsteadt | Giner | Dimensionally Stable Membranes | B
E
S | Henderson | PNNL | Fundamental Investigations of
Water Splitting on Model TiO2
Photocatalysts Doped for Visible
Light Absorption | | | | 3:45 | | Brea | | | | Break | | | | Break | | | | Break | | | | 4:15 | Shimko
D
21 | Gas Equipment
Engineering
Corporation | Innovative Hydrogen Liquefaction
Cycle | T
25 | U of North
Carolina | Characterization of Hydrogen
Adsorption by NMR | C
25 | .,. | Tennessee | Poly(cyclohexadiene)-Based Polymer
Electrolyte Membranes for Fuel Cell
Applications | S | Fujita | BNL | Catalyzed Water Oxidation by Solar
Irradiation of Band-Gap-Narrowed
Semiconductors | | | | | Aceves
O | LLNL | High pressure, low temperature hydrogen tube trailers | T
26 | UC-Santa
Barbara | Hydrogen Storage Materials with
Binding Intermediate between
Physisorption and Chemisorption | F
C
26 | Borup | | PEM Fuel Cell Durability | B
E
S | Dutta | Ohio State
University | Photoactive Inorganic Membranes
for Charge Transport | | | | 5:15 | Toseland | APCI | Reversible Liquid Carriers for an integrated Production, Storage and Delivery of Hydrogen | S
T
12 | UCLA | Hydrogen Storage in Metal-
Organic Frameworks | F
C
27 | Tortorelli | ORNL | Nitrided Metallic Bipolar Plates | B
E
S | Dutton | University of
Pennsylvania | Modular Designed Protein
Constructions for Solar Generated
H2 From Water | | | | 5:45 | P Fenske
D 24 | ANL | Coatings for Centrifugal
Compression | S Miller
T
28 | SwRI | National Testing Laboratory for
Solid-State Hydrogen Storage
Technologies | F
C
28 | Andrianowycz | | Next Generation Bipolar Plates for
Automotive PEM Fuel Cells | | Golbeck-
Bryant | Penn State | A Hybrid Biological/Organic Half-
Cell for Generating Dihydrogen | | | 13-May-08 **Thursday June 12 - Oral Presentations** | | | | | | Hur | | ine 12 - Orai Pres | senialioi | | | | | | 13-May-08 | | |-------|----------------------|-----------------------------|---|----------------|-----------|---|---|---------------------------|---|--|------------------|----------------|---|---|--| | l | <u> </u> | | sion A | \bot | | | ession B | <u> </u> | | ession C | <u>L</u> , | | | Session D | | | 8:45 | Last | Org | Title | + | Last | Org | Title | Last | Org | Title | | | Org
DOE | Title Education Session - DOE | | | | | | | | | | | | | | D | | | Overview | | | 9:00 | P Pickard
D
25 | SNL/GA/CEA | Sulfur-lodine Thermochemical Cycle | A
N
7 | White | LLNL | H2-W The producers value of Water in a Hydrogen Economy | F Goodwin
C
29 | Clemson
University | Effects of Impurities on Fuel Cell
Performance and Durability | E
D
1 | Schmoyer | ORNL | Hydrogen Knowledge and
Opinions Assessment | | | 9:30 | D
26 | SRNL | Hybrid Sulfur Thermochemical
Process Development | A
N
8 | Sparks | NREL | HyDRA: Hydrogen Demand and
Resource Analysis Tool | F Garzon
C
30 | LANL | Effects of Fuel and Air Impurities on
PEM Fuel Cell Performance | E
D
2 | Placet | PNNL | Hydrogen Safety: First
Responder Education | | | 10:00 | P Harvego
D 27 | INL/ANL/Ceramatec | Laboratory-Scale High Temperature
Electrolysis System | A
N
9 | Melaina | NREL | Lessons Learned for Fueling
Infrastructure | F Molter
C
31 | University of CT | The Effects of Impurities on Fuel Cell
Performance and Durability | E D 3 | Caton | NREL | Hydrogen Education for Code
Officials | | | 10:30 | | Bi | reak | | | | Break | | | Break | | | Ві | reak | | | 11:00 | D
28 | ANL | Alternative Themochemical Cycles | S
T
29 | Klebanoff | | Metal Hydride Center of Excellence | F Cole
C 34 | Corp | Water Transport in PEM Fuel Cells:
Advanced Modeling, Material Selection,
Testing, and Design Optimization | D
4 | | The Media
Network | Increasing "H2IQ": A Public
Information Program | | | 11:30 | P Bain
D 29 | NREL | Indirectly Heated Biomass
Gasification | S
T
30 | Liu | HRL
Laboratories | Thermodynamically Tuned
Nanophase Materials for Reversible
Hydrogen Storage | F Cross
C
32 | Nuvera Fuel
Cells | Subfreezing Start/Stop Protocol for an
Advanced Metallic Open-Flowfield Fuel
Cell Stack | E
D
5 | Rooney | Hydrogen Educa | H2 and You A Public Education
Initiative by the Hydrogen
Education Foundation | | | | P Roberts
D 30 | GTI | One Step Biomass Gas Reforming-
Shift Separation Membrane Reactor | S
T
31 | Fang | Univ. of Utah | Chemical Vapor Synthesis and
Discovery of H2 Storage Materials:
Li-Al-Mg-N-H System | F Jacobson
C
36 | NIST | Neutron Imaging Study of the Water
Transport in Operating Fuel Cells | E
D
6 | Nagle | Lawrence Hall
of Science at
UC-Berkeley | Hydrogen Technology and
Energy Curriculum (HyTEC) | | | 12:30 | | Lu | ınch | | | | Lunch | | | Lunch | | | Lu | unch | | | 1:45 | P Vanderspu
D 31 | t UTRC | A Novel Slurry Based Biomass
Reforming Process | S
T
32 | Robertson | | Reversible Hydrogen Storage
Materials – Structure, Chemistry
and Electronic Structure | F Kandlikar
C
33 | Rochester
Institute of
Technology | Visualization of Fuel Cell Water
Transport and Performance
Characterization Under Freezing
Conditions | E
D
7 | Spruill | NEED | H2 Educate! Hydrogen
Education for Middle Schools | | | 2:15 | P Xu
D
32 | J Craig Venter
Institute | Hydrogen From Water in a
Recombinant Oxygen-Tolerant
Cyanobacteria System | S
T
33 | | Univ. of
Pittsburgh/Geor
gia Tech | First-Principles Modeling of
Hydrogen Storage in Metal Hydride
Systems | F Borup
C 35 | LANL | Water Transport Exploratory Studies | S
C
S | Ruiz | DOE | Safety, Codes, and Standards | | | 2:45 | P Melis
D 33 | UC Berkeley | Maximizing Light Utilization Efficiency
and Hydrogen Production in
Microalgal Cultures | 7 S
T
36 | Ronnebro | | Discovery and Development of
Metal Hydrides for Reversible On-
board Storage | F Mirza
C
37 | Honeywell | Water/Thermal Management | S
C
S
1 | Burgess | NREL | Hydrogen Codes and Standards | | | 3:15 | P Douglas
D
34 | Montana State
University | Use of Biological Materials and
Biologically Inspired Materials for
Hydrogen Catalysts | S
T
35 | Brown | ORNL | Complex Hydrides for Hydrogen
Storage Studies of the Al(BH4)3
System | F TeGrotenhuis
C
38 | PNNL | Low-Cost Manufacturable Microchannel
Systems for Passive PEM Water
Management | SCSQ | Somerday | SNL | Materials Compatibility | | | 3:45 | | | reak | | | | Break | | | Break | | | Ві | reak | | | 4:15 | P McFarland
D 38 | U. of CA Santa
Barbara | Development of Cost Effective
Materials for PEC Production | S
T
34 | Bowman | Laboratory | Development and Evaluation of
Advanced Hydride Systems for
Reversible Hydrogen Storage | F Swamy
C
39 | Intelligent
Energy | Development and Demonstration of a
New-generation High Efficiency 1-10 kW
Stationary PEM Fuel Cell System | _ | Fassbende
r | PNNL | Hydrogen Safety Tools:
Software and Hardware | | | 4:45 | D
35 | MV Systems | PHOTOELECTROCHEMICAL
HYDROGEN PRODUCTION: DOE
PEC Working Group Overview &
UNLV-SHGR Program Subtask | S
T
37 | | | Effect of Trace Elements on Long-
Term Cycling and Aging Properties
of Complex Hydrides for Hydrogen
Storage | F Vogel
C
40 | Plug Power Inc. | International Stationary Fuel Cell
Demonstration | C
S
4 | Rockward | | Hydrogen Fuel Quality | | | 5:15 | D
36 | NREL | Photoelectrochemical Systems for
Hydrogen Production | S
T
38 | | | Fundamental studies of advanced
high-capacity reversible metal
hydrides/ Recharging of Light Metal
Hydrides Through Supercritical Fluid
Hydrogenation | F Staudt
C
41 | | Intergovernmental Stationary Fuel Cell
System Demonstration | C
5 | | SNL | Hydrogen Release Behaviour | | | 5:45 | P Xu
D
37 | Midwest
Optoelectronics | Critical Research for Cost-effective
Photoelectrochemical Production of
Hydrogen | S
T
39 | Graetz | BNL | Aluminum Hydride Regeneration | F Strayer
C
42 | UTC Power | Stationary PEM Fuel Cell Power Plant
Verification | S C S 6 | Weiner | PNNL | Hydrogen Safety Panel | | 13-May-08 **Friday June 13 - Oral Presentations** 13-May-08 | | 1 may dule 10 - Graff resentations | | | | | | | | | | | | | | |-------|------------------------------------|---|---|------------------------|----------------------|---|--------------|---------|-------------------------|--|----------------------|--|--|--| | | | Se | ssion A | | | Session B | | | | Session C | Session D | | | | | | Last | Org | Title | Last | Org | Title | | Last | Org | Title | Last | Org | Title | | | 9:00 | P Jack
D
39 | Eltron
Research Inc. | Scale-up of Hydrogen Transport
Membranes for IGCC and
FutureGen Plants | S Anton
T
40 | SRNL | Fundamental Reactivity Testing
and Analysis of Hydrogen
Storage Materials & Systems | F
C
43 | Norrick | Cummins | Diesel Fueled SOFC System for
Class 7/Class 8 On-Highway
Truck Auxiliary Power | A Dogan
N
10 | U Missouri-
Rolla | Hydrogen and Fuel Cell Analysis:
Lessons Learned from Stationary Power
Generation | | | 9:30 | P Coulter
D
40 | Southwest
Research
Institute | Cost-Effective Method for
Producing Self-Supporting Pd
Alloy Membrane for Use in the
Efficient Production of Coal-
derived Hydrogen | S Mosher
T 41 | UTRC | Quantifying & Addressing the
DOE Material Reactivity
Requirements with Analysis &
Testing of Hydrogen Storage
Materials & Systems | F
C
44 | Blake | Delphi | Solid Oxide Fuel Cell System
Development for Auxiliary Power
in Heavy Duty Vehicle
Applications | A Kumar
N
11 | ANL | Hydrogen Quality Issues for Fuel Cell
Vehicles | | | 10:00 | P Emerson
D
41 | United
Technologies | Experimental Demonstration of
Advanced Palladium Membrane
Separators for Central High-Purity
Hydrogen Production | S Dedrick
T
, 42 | Sandia-
Livermore | Chemcial and Environmental
Reactivity Properties of Metal
Hydrides within the Context of
Systems | F
C
45 | | MTI Micro
Fuel Cells | DMFC Prototype Demonstration
for Consumer Electronic
Applications | A Kromer
N
12 | TIAX | Update on Platinum Availability and
Assessment of Platinum Leasing
Strategies for Fuel Cell Vehicles | | | 10:30 | | ı | Break | | | Break | | | | Break | A Wuebble
N
13 | University of
Illinois-
Urbana-
Champaign | Evaluation of the Potential Large-Scale
Use and Production of Hydrogen in
Energy and Transportation Applications | | | 11:00 | P Barton
D
42 | Western Res.
Ins. & U of
Wyoming
Res.Corp. | Integration of a Structural Water
Gas Shift Catalyst with a
Vanadium Alloy Hydrogen
Transport Device | | | | F
C
46 | Wells | Polyfuel Inc. | DMFC Power Supply for All-Day
True-Wireless Mobile Computing | A Grieb
N
14 | Tetra Tech | Potential Environmental Impacts of
Hydrogen-Based Transportation and
Power Systems | | | 11:30 | Buxbaum
D
43 | REB Research
& Consulting | High Flux Metallic Membranes for
Hydrogen Recovery & Membrane
Reactors | | | | F
C
47 | | U of So.
Carolina | Fuel Cell Research at the
University of South Carolina | M Devlin
F | DOE | Manufacturing Session Overview (Note 11:45 start) | | | 12:00 | | | | | | | F
C
48 | Liu | ANL | Novel PEMFC Stack Using
Patterned Aligned Carbon
Nanotubes as Electrodes in MEA | M Ulsh
F
2 | NREL | Fuel Cell MEA Manufacturing R&D | | | 12:30 | | | | | | | F
C
49 | Snyder | Montana
State | Detection of Trace Platinum
Group Metal Element Particulates
with Laser Spectroscopy | M Ryan
F
3 | NCMS | Advanced Manufacturing Technologies
for Renewable Energy Applications - a
DoE/NCMS Partnership | | | | | ı | 1 | | | 1 | 1 | | | 1 | M Wood
F
4 | Profile Comp | Rapid Manufacturing of Carbon
Composite High Pressure Storage
Cylinders (Note start time 12:50 - an
NCMS project) | | | | | | | | | | | | | | M Roberts | UTC Power | Technologies for Mass-Manufacturable | | | M
F
4 | Wood | Profile Compo | Rapid Manufacturing of Carbon
Composite High Pressure Storage
Cylinders (Note start time 12:50 - an
NCMS project) | |-------------|-----------|---------------|---| | M
F
5 | Roberts | UTC Power | Technologies for Mass-Manufacturable
Manifolds and Seals for PEM Fuel Cells
in Transportation Applications (Note start
time 1:10, an NCMS project) | | M
F
6 | Kountz | DuPont Fuel (| Develop Low-Cost MEA3 Process (Note start time 1:30, an NCMS project) | | M
F
7 | Stanfield | NIST | NIST Fuel Cell Manufacturing Research
Project Metrology for Fuel Cell
Manufacturing | | | <u> </u> | | 13-May-00 | |--------|---------------|------------------------------|--| | No. | Last | Organization | Title | | STP 1 | Ott | LANL | DOE Chemical Hydrogen Storage Center of Excellence Overview | | STP 2 | Baker | LANL | Chemical Hydrogen Storage R&D at Los Alamos National Laboratory | | STP 3 | Aardahl | PNNL | PNNL Research as part of the Chemical Hydrogen CoE | | STP 4 | Gore | Purdue University | Purdue Hydrogen Systems Laboratory | | STP 5 | Damle | RTI | Development of Regenerable, High-Capacity Boron Nitrogen Hydrides For Hydrogen Storage | | STP 6 | Neumann | NIST | Neutron Characterization in support of the Hydrogen Sorption Center of Excellence | | STP 7 | Udovic | NIST | Neutron Characterization and Calphad in support of the Metal Hydride Center of Excellence | | STP 8 | Liu | Duke U | Optimizing the Binding Energy of Hydrogen on Nanostructured Carbon Materials through Structure Control and Chemical Doping | | STP 9 | Simpson | NREL | DOE HSCoE: Repeat of COE Talk on a poster | | STP 10 | Heben | NREL | NREL Research as Part of the HSCoE: expanded NREL Technical content | | STP 11 | Chung | Penn State | Advanced Boron and Metal Loaded High Porosity Carbons | | STP 12 | Kittrel | Rice U. | Nanoengineering the Forces of Attractionin a Metal-Carbon Array for H2Uptake | | STP 13 | Klebanoff | Sandia-Livermore | Metal Hydride Center of Excellence Overview, Repeat of talk on poster | | STP 14 | Klebanoff | Sandia-Livermore | Sandia work for MHCoE: expanded poster no review | | STP 16 | Arsenault | UTRC | Catalyzed Nano-Framework Stablized High Density Reversible Hydrogen | | 317 10 | Arsenault | UIKC | Storage Systems | | STP 17 | Kundaliya | Intematix | High Throughput Combinatorial Chemistry Development of Complex Hydrides | | STP 18 | Clemens | Stanford U | Thermodynamically Tuned Nanophase Materials for Reversible Hydrogen | | 311 10 | Ciemens | Starilord O | Storage: Structure & Kinetics of Nanoparticle and Model System Materials | | STP 19 | Zidan | SRNL | Alane Electrochemical Recharging | | STP 20 | Anton | SRNL | LiMgN Sorption Kinetics and Solid State Hydride System Engineering for the | | | | | MHCOE | | STP 21 | Ahn | California Institute of Tech | Synthesis of Nanophase Materials for Thermodynamically Tuned Reversible Hydrogen Storage | | STP 22 | Zhao | OSU | Lightweight Intermetallics for Hydrogen Storage | | STP 23 | Lewis | UOP | Discovery of Novel Complex Metal Hydrides for Hydrogen Storage through Molecular Modeling and Combinatorial Methods | | STP 24 | Goudy | Delaware State University | Center for Hydrogen Storage Research at Delaware State University | | STP 25 | Cooper | Air Products | Hydrogen Storage by Reversible Hydrogenation of Liquid-phase Hydrogen Carriers | | STP 26 | Hwang | Michigan Tech Univ. | Novel Metal Perhydrides for Hydrogen Storage | | STP 27 | Shelby | Alfred | Glass Microspheres for Hydrogen Storage | | STP 28 | Fan | Gas Technology Institute | Electron-Charged Graphite-Based Hydrogen Storage Material | | STP 29 | Cabasso | State University of New York | Polymer-Based Activated Carbon Nanostructures for H2 Storage | | STP 30 | Liu | Quantum | H2 Tank Manufacturing Optimization | | STP 31 | Stefanakos | U of South Florida | Hydrogen Storage Research | | STP 32 | Bhattacharyya | U of Arkansas | An Integrated Approach for Hydrogen Production and Storage in Complex | | | ,, | | Hydrides of Transitional Elements | | STP 33 | Heske | UNLV | Hydrogen Fuel Cells and Storage Technology Project | | STP 34 | Redmond | Limnia (formerly FST) | Modular Storage Systems | | | | | | | ANP 1 | Michael | Penev | Hydrogen Technology Analysis: H2A Stationary Power Production Model | | ANP 3 | Duffy | NREL | DOE Hydrogen Program Risk Analysis in Support of EERE's Portfolio Analysis | | ANP 4 | McDaniel | SNL | Hydrogen Infrastructure Analyses | | SCSP 1 | Nakarado | Regulatory Logic | Codes & Standards for the Hydrogen Economy | | SCSP 2 | Lieberman | Intelligent Optical Systems | Hydrogen Optical Fiber Sensors | | SCSP 3 | Schoenung | Longitude 122 West | IEA Hydrogen Task 18: Evaluation of Integrated Demonstration Systems | | TVP 1 | Portwood | Florida Hydrogen Initiative | Florida Hydrogen Initiative | | TVP 2 | Eudy | NREL | Technology Validation: Fuel Cell Bus Evaluations | | | | | | ## Wednesday Posters | No | Loot | Organization | Title | |---------|--------------|------------------------------------|---| | No. | Last | Organization | Fundamentals of a Solar-thermal Mn2O3/MnO Thermochemical Cycle to Split Water | | | Weimer | CU | Novel Low-Temperature Proton Transport Membranes | | PDP 2 | Payzant | ORNL | | | PDP 3 | Welk | SNL | Ultra-thin Proton Conduction Membranes for H2 Stream Purification with Protective Getter Coatings Renewable Electrolysis Integrated System Development and Testing | | PDP 4 | Harrison | NREL | PEM Electrolyzer Incorporating an Advanced Low-Cost Membrane | | PDP 5 | Hamdan | Giner Electrochemical Systems | · · · · · · · · · · · · · · · · · · · | | PDP 6 | Shimko | Avalence LLC | High-Capacity, High Pressure Electrolysis System with Renewable Power Sources | | PDP 7 | Philippidis | Florida International University | Photobiological Hydrogen Research | | PDP 8 | Aceves | LLNL | Inexpensive Delivery of Cold Hydrogen in High Performance Glass Fiber Composite Pressure Vessels | | PDP 9 | Osborne | Concepts NREC | Development of a Centrifugal Hydrogen Pipeline Gas Compressor | | PDP 10 | Walton | Mohawk Innovative Technologies | Oil-Free, Centrifugal Hydrogen Compression Technology Demonstration | | PDP 11 | Somerday | SNL | Enabling Hydrogen Embrittlement Modeling of Structural Steels | | PDP 12 | Martin | Edison Materials Tech Center | Developing Improved Materials to Support the Hydrogen Economy | | PDP 13 | Goswami | U of South Florida | Hydrogen Production and Fuel Cell Research | | PDP 14 | Swalla | GE Global Res. | Advanced Alkaline Electrolysis | | PDP 15 | Misra | U of Nev. Reno | Photoelectrochemical Generation of HydrogenUsing Heterostructural Titania Nanotube Arrays | | PDP 16 | Evans | NREL | Distributed Bio-Oil Reforming | | PDP 17 | Liu | GE Global Res. | Integrated Short Contact Time Hydrogen Generator (SCPO) | | PDP 18 | Roth | TIAX | Solar Thermochemical Hydrogen (STCH) Production -H2A Analysis | | PDP 19 | Panchal | ANL | OTEC Cost Analysis for NH3/H2 Production | | PDP 20 | Klug | Concurrent Tech. Corp | Pipeline Working Group Support and Off-Board Hydrogen Storage Development | | PDP 21 | Mazumber | U. Arkansas Little Rock | Photoelectrochemical Hydrogen Production | | PDP 22 | Balachandran | ANL | Distributed Reforming of Renewable Liquids via Water Splitting using Oxygen Transport Membrane (OTM | | PDP 23 | Winstryg | Lincoln Composites | Design and Development of High Pressure Hydrogen Storage Tank for Storage and Gaseous Truck Delivery | | PDP 24 | Deng | U. of Toledo | Production of Hydrogen For Clean and Renewable Sources of Energy for Fuel Cell Vehicles | | PDP 25 | Liu | Media and Process Technology Inc. | Water-Gas Shift via a Single Stage Low-Temperature Membrane Reactor | | PDP 26 | Ghirardi | NREL | Biological Systems for Hydrogen Photoproduction | | PDP 27 | Maness | NREL | Fermentative and Electrohydrogenic Approaches to Hydrogen Productior | | PDP 28 | Hesmat | MiTi | Hydrogen Compression | | PDP 29 | Lipp | FuelCell Energy | Hydrogen Compression | | PDP 30 | Schmura | Concurrent Tech. Corp | Northeastern I-95 Corridor and Pennsylvania Indigenous Energy | | PDP 31 | Schwartz | Praxair | Advanced Hydrogen Liquefaction Process | | PDP 32 | | | Active Magnetic Regeerative Liqufier | | | Barclay | Prometheus Energy | | | PDP 33 | Tao | Materials and Systems Research | Development of a Novel Efficient Solid-Oxide Hybrid for Co-generation of Hydrogen and Electricity Using
Nearby Resources for Local Applications | | DDD 04 | T | NDEI | TBD | | PDP 34 | Turner | NREL | | | PDP 35 | Feng | ORNL | H2 Permeability and Integrity of Steel Welds | | FCP 1 | Wainright | Case Western R Univ | Light-weight, Low Cost PEM Fuel Cell Stacks | | FCP 2 | Shore | BASF | Platinum Group Metal Recycling Technology Development | | FCP 3 | Grot | Ion Power, Inc. | Platinum Recycling Technology Development | | FCP 4 | Rockward | LANL | Component Benchmarking Subtask Reported: USFCC Durability Protocols and Technically-assisted Industrial | | | | | and University Partners | | FCP 5 | Parsons | UTC Fuel Cells | Low Cost, Durable Seals For PEM Fuel Cells | | FCP 6 | Gee | Honeywell | Cost and Performance Enhancements for a PEM Fuel Cell Turbocompressor | | FCP 7 | Bloom | ANL | Fuel Cell Testing at the Argonne Fuel Cell Test Facility | | FCP 8 | Lawrance | Idatech | Research & Development for Off-Road Fuel Cell Applications | | FCP 9 | Mahadevan | Battelle | Market Opportunity Assessment for Direct Hydrogen PEM Fuel Cells in Pre-automotive Markets | | FCP 10 | Leshchiner | Nuvera Fuel Cells, Inc | Cost-Effective High Performance Advanced Reforming Module (CHARM) | | FCP 11 | Mauritz | U of So. Mississippi | Characterization of PEMFC Membrane Durability | | FCP 12 | Mauser | Chemsultants International | Microstructural Design and Development of High Performance Polymer Electrolyte Membranes | | FCP 13 | Lui | Giner Electrochemical Systems, LLC | Dimensionally Stable High Performance Membrane | | FCP 14 | Berry | Kettering University | Development of Novel PEM Membrane and Multiphase CFD Modeling of PEM Fuel Cel | | FCP 15 | Popov | University of South Carolina | Novel Non-Precious Metals for PEMFC: Catalyts Selection through Molecular Modeling and Durability Studies | | MFP 1 | Lei | Cabot Corp. | Membrane Manufacturing | | MFP 2 | McCarthy | Protonex Corp. | Novel Manufacturing Process for PEM Fuel Cell Stacks | | MFP 3 | Mohring | Millenium Cell | Manufacturable Chemical Hydride Fuel System Storage for Fuel Cell Systems | | MFP 4 | Ramirez | ASME Standards Technology | Non-Destructive Testing and Evaluation Methods | | | | | Hydrogenases of Methanococcus maripaludis | | BESP 1 | Leigh | University of Washington | Theoretical Research Program on Bio-Inspired Inorganic Hydrogen Generating Catalysts and Electrodes | | BESP 2 | Selloni | Princeton University | | | BESP 3 | Krumholz | University of Oklahoma | Identification of Enzymes involved in Syntrophic H2 production | | BESP 4 | Wang | University of Hawaii | Production and Engineering of Hydrogenase as a Biocatalyst for Hydrogen Fue | | BESP 5 | Armstrong | University of Arizona | Electronically Wired Semiconductor Nanoparticles: Toward Vectoral Electron Transport in Hybrid Materials | | BESP 6 | Zhang | UC Santa Cruz | Hydrogen Generation Using Integrated Photovoltaic and Photoelectrochemical Cells | | BESP 7 | Barber | Penn State | Tandem Hybrid Solar Energy System | | BESP 8 | Mallouk | Penn State | Photoelectrochemistry of Semiconductor Nanowire Arrays | | BESP 9 | Guerra | Nanoptek Corporation | Strained TiO2 Photoanodes | | BESP 10 | Grimes | Penn State | Highly Ordered Nanotube Arrays and their Use in Water Photoelectrolysis | | BESP 11 | Brewer | Virginia Tech | Photoinitiated Electron Collection in Mixed-Metal Supramolecular Complexes: Development of Photocatalysts | | | | | |